Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
medRxiv ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38562733

RESUMO

Hyperpolarization activated Cyclic Nucleotide (HCN) gated channels are crucial for various neurophysiological functions, including learning and sensory functions, and their dysfunction are responsible for brain disorders, such as epilepsy. To date, HCN2 variants have only been associated with mild epilepsy and recently, one monoallelic missense variant has been linked to developmental and epileptic encephalopathy. Here, we expand the phenotypic spectrum of HCN2- related disorders by describing twenty-one additional individuals from fifteen unrelated families carrying HCN2 variants. Seventeen individuals had developmental delay/intellectual disability (DD/ID), two had borderline DD/ID, and one had borderline DD. Ten individuals had epilepsy with DD/ID, with median age of onset of 10 months, and one had epilepsy with normal development. Molecular diagnosis identified thirteen different pathogenic HCN2 variants, including eleven missense variants affecting highly conserved amino acids, one frameshift variant, and one in-frame deletion. Seven variants were monoallelic of which five occurred de novo, one was not maternally inherited, one was inherited from a father with mild learning disabilities, and one was of unknown inheritance. The remaining six variants were biallelic, with four homozygous and two compound heterozygous variants. Functional studies using two-electrode voltage-clamp recordings in Xenopus laevis oocytes were performed on three monoallelic variants, p.(Arg324His), p.(Ala363Val), and p.(Met374Leu), and three biallelic variants, p.(Leu377His), p.(Pro493Leu) and p.(Gly587Asp). The p.(Arg324His) variant induced a strong increase of HCN2 conductance, while p.(Ala363Val) and p.(Met374Leu) displayed dominant negative effects, leading to a partial loss of HCN2 channel function. By confocal imaging, we found that the p.(Leu377His), p.(Pro493Leu) and p.(Gly587Asp) pathogenic variants impaired membrane trafficking, resulting in a complete loss of HCN2 elicited currents in Xenopus oocytes. Structural 3D-analysis in depolarized and hyperpolarized states of HCN2 channels, revealed that the pathogenic variants p.(His205Gln), p.(Ser409Leu), p.(Arg324Cys), p.(Asn369Ser) and p.(Gly460Asp) modify molecular interactions altering HCN2 function. Taken together, our data broadens the clinical spectrum associated with HCN2 variants, and disclose that HCN2 is involved in developmental encephalopathy with or without epilepsy.

2.
NPJ Genom Med ; 9(1): 22, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531898

RESUMO

Pathogenic loss-of-function variants in BGN, an X-linked gene encoding biglycan, are associated with Meester-Loeys syndrome (MRLS), a thoracic aortic aneurysm/dissection syndrome. Since the initial publication of five probands in 2017, we have considerably expanded our MRLS cohort to a total of 18 probands (16 males and 2 females). Segregation analyses identified 36 additional BGN variant-harboring family members (9 males and 27 females). The identified BGN variants were shown to lead to loss-of-function by cDNA and Western Blot analyses of skin fibroblasts or were strongly predicted to lead to loss-of-function based on the nature of the variant. No (likely) pathogenic missense variants without additional (predicted) splice effects were identified. Interestingly, a male proband with a deletion spanning the coding sequence of BGN and the 5' untranslated region of the downstream gene (ATP2B3) presented with a more severe skeletal phenotype. This may possibly be explained by expressional activation of the downstream ATPase ATP2B3 (normally repressed in skin fibroblasts) driven by the remnant BGN promotor. This study highlights that aneurysms and dissections in MRLS extend beyond the thoracic aorta, affecting the entire arterial tree, and cardiovascular symptoms may coincide with non-specific connective tissue features. Furthermore, the clinical presentation is more severe and penetrant in males compared to females. Extensive analysis at RNA, cDNA, and/or protein level is recommended to prove a loss-of-function effect before determining the pathogenicity of identified BGN missense and non-canonical splice variants. In conclusion, distinct mechanisms may underlie the wide phenotypic spectrum of MRLS patients carrying loss-of-function variants in BGN.

3.
Hum Mutat ; 43(12): e24-e37, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36177613

RESUMO

The use of genetic testing within nephrology is increasing and its diagnostic yield depends on the methods utilized, patient selection criteria, and population characteristics. We performed exome sequencing (ES) analysis on 102 chronic kidney disease (CKD) patients with likely genetic kidney disease. Patients had diverse CKD subtypes with/without consanguinity, positive family history, and possible hereditary renal syndrome with extra-renal abnormalities or progressive kidney disease of unknown etiology. The identified genetic variants associated with the observed kidney phenotypes were then confirmed and reported. End-stage kidney disease was reported in 51% of the cohort and a family history of kidney disease in 59%, while known consanguinity was reported in 54%. Pathogenic/likely pathogenic variants were identified in 43 patients with a diagnostic yield of 42%, and clinically associated variants of unknown significance (VUS) were identified in further 21 CKD patients (21%). A total of eight novel predicted pathogenic variants and eight VUS were detected. The clinical utility of ES within the nephrology clinic was demonstrated allowing patient management to be disease-specific. In this cohort, ES detected a diagnostic molecular abnormality in 42% of patients with CKD phenotypes. Positive family history and high rates of consanguinity likely contributed to this high diagnostic yield.


Assuntos
Testes Genéticos , Insuficiência Renal Crônica , Humanos , Arábia Saudita/epidemiologia , Sequenciamento do Exoma , Consanguinidade , Testes Genéticos/métodos , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/epidemiologia , Insuficiência Renal Crônica/genética
4.
Nat Genet ; 54(8): 1214-1226, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35864190

RESUMO

Cirrhosis is usually a late-onset and life-threatening disease characterized by fibrotic scarring and inflammation that disrupts liver architecture and function. While it is typically the result of alcoholism or hepatitis viral infection in adults, its etiology in infants is much less understood. In this study, we report 14 children from ten unrelated families presenting with a syndromic form of pediatric liver cirrhosis. By genome/exome sequencing, we found recessive variants in FOCAD segregating with the disease. Zebrafish lacking focad phenocopied the human disease, revealing a signature of altered messenger RNA (mRNA) degradation processes in the liver. Using patient's primary cells and CRISPR-Cas9-mediated inactivation in human hepatic cell lines, we found that FOCAD deficiency compromises the SKI mRNA surveillance pathway by reducing the levels of the RNA helicase SKIC2 and its cofactor SKIC3. FOCAD knockout hepatocytes exhibited lowered albumin expression and signs of persistent injury accompanied by CCL2 overproduction. Our results reveal the importance of FOCAD in maintaining liver homeostasis and disclose a possible therapeutic intervention point via inhibition of the CCL2/CCR2 signaling axis.


Assuntos
Cirrose Hepática , Proteínas Supressoras de Tumor , Adulto , Animais , Criança , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Síndrome , Proteínas Supressoras de Tumor/genética , Peixe-Zebra/genética
7.
Biology (Basel) ; 10(8)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34440002

RESUMO

Cystic renal disease (CRD) comprises a heterogeneous group of genetic and acquired disorders. The cystic lesions are detected through imaging, either incidentally or after symptoms develop, due to an underlying disease process. In this study, we aim to study the metabolomic profiles of CRD patients for potential disease-specific biomarkers using unlabeled and labeled metabolomics using low and high-resolution mass spectrometry (MS), respectively. Dried-blood spot (DBS) and serum samples, collected from CRD patients and healthy controls, were analyzed using the unlabeled and labeled method. The metabolomics profiles for both sets of samples and groups were collected, and their data were processed using the lab's standard protocol. The univariate analysis showed (FDR p < 0.05 and fold change 2) was significant to show a group of potential biomarkers for CRD discovery, including uridine diphosphate, cystine-5-diphosphate, and morpholine. Several pathways were involved in CRD patients based on the metabolic profile, including aminoacyl-tRNA biosynthesis, purine and pyrimidine, glutathione, TCA cycle, and some amino acid metabolism (alanine, aspartate and glutamate, arginine and tryptophan), which have the most impact. In conclusion, early CRD detection and treatment is possible using a metabolomics approach that targets alanine, aspartate, and glutamate pathway metabolites.

8.
NPJ Genom Med ; 6(1): 62, 2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34272389

RESUMO

The advances and development of sequencing techniques and data analysis resulted in a pool of informative genetic data, that can be analyzed for informing decision making in designing national screening, prevention programs, and molecular diagnostic tests. The accumulation of molecular data from different populations widen the scope of utilization of this information. Bleeding disorders are a heterogeneous group of clinically overlapping disorders. We analyzed the targeted sequencing data from ~1285 Saudi individuals in 17 blood and bleeding disorders genes, to determine the frequency of mutations and variants. We used a replication set of ~5000 local exomes to validate pathogenicity and determine allele frequencies. We identified a total of 821 variants, of these 98 were listed in HGMD as disease related variants and 140 were novel variants. The majority of variants were present in VWF, followed by F5, F8, and G6PD genes, while FGG, FGB, and HBA1 had the lowest number of variants. Our analysis generated a priority list of genes, mutations and novel variants. This data will have an impact on informing decisions for screening and prevention programs and in management of vulnerable patients admitted to emergency, surgery, or interventions with bleeding side effects.

9.
Kidney Int ; 100(2): 415-429, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33675844

RESUMO

HELIX syndrome, characterized by hypohidrosis, electrolyte imbalance, lacrimal gland dysfunction, ichthyosis, and xerostomia due to claudin-10 (CLDN10) mutations, was recognized in 2017. Here we describe two unrelated Saudi families with this syndrome due to a novel CLDN10 mutation with a unique mechanism of CLDN10 inactivation. The two consanguineous families include 12 affected individuals (three siblings in family 1 and nine members in family 2). They presented with hypokalemia and the above-mentioned features of HELIX syndrome. The underlying mutation was detected by whole exome sequencing, confirmed by Sanger sequencing and functionally indicated by RT-PCR, electrophysiological studies and immunohistochemical staining of transfected HEK293 and MDCK C7 cells, and skin and kidney biopsy tissues. A novel biallelic single nucleotide deletion was identified in exon 5 of CLDN10 (NM_182848.3: c.647delC, p.P216Lfs∗19 for CLDN10a or NM_006984.4: c.653delC, p.P218Lfs∗21 for CLDN10b). The mutation led to frameshift and extension of the original termination codon by nine amino acids with loss of the C-terminus pdz-binding motif. Functional studies showed mRNA degradation and protein retention in intracellular compartments and that the pdz-binding motif is crucial for proper localization of claudin-10 in tight junctions. In the kidney, claudin-10 was replaced by translocation of claudin-2 (proximal tubule) and claudin-19 (thick ascending limb), and in the sweat gland by claudin-3 and occludin. However, these claudins did not functionally compensate for loss of claudin-10. Thus, this novel CLDN10 mutation identified in these two families disrupted the C-terminus pdz-binding motif of claudin-10 causing HELIX syndrome.


Assuntos
Anormalidades Múltiplas/genética , Claudinas , Junções Íntimas , Claudinas/genética , Consanguinidade , Células HEK293 , Humanos , Aparelho Lacrimal/fisiopatologia , Mutação , Síndrome , Equilíbrio Hidroeletrolítico , Xerostomia/genética
10.
Hematol Oncol Stem Cell Ther ; 14(4): 290-301, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33736979

RESUMO

Gene therapy (GT) has been reported to improve bone marrow function in individuals with Fanconi anemia (FA); however, its clinical application is still in the initial stages. We conducted this systematic review, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, to assess the long-term safety and clinical outcomes of GT in FA patients. Electronic searches from PubMed, Web of Science, Cochrane Library, and Google Scholar were conducted and full texts of articles meeting our inclusion criteria were reviewed. Three clinical trials were included, with a total of nine patients and mean age of 10.7 ±â€¯5.7 years. All patients had lentiviral-mediated GT. A 1-year follow-up showed stabilization in blood lineages, without any serious adverse effects from GT. A metaregression analysis could not be conducted, as very little long-term follow-up data of patients was observed, and the median survival rate could not be calculated. Thus, we can conclude that GT seems to be a safe procedure in FA; however, further research needs to be conducted on the longitudinal clinical effects of GT in FA, for a better insight into its potential to become a standard form of treatment.


Assuntos
Anemia de Fanconi , Adolescente , Criança , Pré-Escolar , Anemia de Fanconi/genética , Anemia de Fanconi/terapia , Terapia Genética , Humanos
11.
iScience ; 24(3): 102214, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33748703

RESUMO

Autosomal recessive mutations in G6PC3 cause isolated and syndromic congenital neutropenia which includes congenital heart disease and atypical inflammatory bowel disease (IBD). In a highly consanguineous pedigree with novel mutations in G6PC3 and MPL, we performed comprehensive multi-omics analyses. Structural analysis of variant G6PC3 and MPL proteins suggests a damaging effect. A distinct molecular cytokine profile (cytokinome) in the affected proband with IBD was detected. Liquid chromatography-mass spectrometry-based proteomics analysis of the G6PC3-deficient plasma samples identified 460 distinct proteins including 75 upregulated and 73 downregulated proteins. Specifically, the transcription factor GATA4 and LST1 were downregulated while platelet factor 4 (PF4) was upregulated. GATA4 and PF4 have been linked to congenital heart disease and IBD respectively, while LST1 may have perturbed a variety of essential cell functions as it is required for normal cell-cell communication. Together, these studies provide potentially novel insights into the pathogenesis of syndromic congenital G6PC3 deficiency.

12.
Metabolomics ; 17(1): 4, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33394183

RESUMO

INTRODUCTION: Cystic fibrosis (CF) is a lethal multisystemic disease of a monogenic origin with numerous mutations. Functional defects in the cystic fibrosis transmembrane conductance receptor (CFTR) protein based on these mutations are categorised into distinct classes having different clinical presentations and disease severity. OBJECTIVES: The present study aimed to create a comprehensive metabolomic profile of altered metabolites in patients with CF, among different classes and in relation to lung function. METHODS: A chemical isotope labeling liquid chromatography-mass spectrometry metabolomics was used to study the serum metabolic profiles of young and adult CF (n = 39) patients and healthy controls (n = 30). Comparisons were made at three levels, CF vs. controls, among mutational classes of CF, between CF class III and IV, and correlated the lung function findings. RESULTS: A distinctive metabolic profile was observed in the three analyses. 78, 20, and 13 significantly differentially dysregulated metabolites were identified in the patients with CF, among the different classes and between class III and IV, respectively. The significantly identified metabolites included amino acids, di-, and tri-peptides, glutathione, glutamine, glutamate, and arginine metabolism. The top significant metabolites include 1-Aminopropan-2-ol, ophthalmate, serotonin, cystathionine, and gamma-glutamylglutamic acid. Lung function represented by an above-average FEV1% level was associated with decreased glutamic acid and increased guanosine levels. CONCLUSION: Metabolomic profiling identified alterations in different amino acids and dipeptides, involved in regulating glutathione metabolism. Two metabolites, 3,4-dihydroxymandelate-3-O-sulfate and 5-Aminopentanoic acid, were identified in common between the three anlayses and may represent as highly sensitive biomarkers for CF.


Assuntos
Biomarcadores , Fibrose Cística/genética , Fibrose Cística/metabolismo , Metaboloma , Metabolômica , Mutação , Estudos de Casos e Controles , Cromatografia Líquida , Fibrose Cística/diagnóstico , Humanos , Espectrometria de Massas , Metabolômica/métodos , Testes de Função Respiratória , Índice de Gravidade de Doença
13.
Front Allergy ; 2: 774902, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35386989

RESUMO

Dedicator of cytokinesis 8 deficiency is an autosomal recessive primary immune deficiency disease belonging to the group of hyperimmunoglobulinemia E syndrome (HIES). The clinical phenotype of dedicator of cytokinesis 8 (DOCK8) deficiency, characterized by allergic manifestations, increased infections, and increased IgE levels, overlaps with the clinical presentation of atopic dermatitis (AD). Despite the identification of metabolomics and cytokine biomarkers, distinguishing between the two conditions remains clinically challenging. The present study used a label-free untargeted proteomics approach using liquid-chromatography mass spectrometry with network pathway analysis to identify the differentially regulated serum proteins and the associated metabolic pathways altered between the groups. Serum samples from DOCK8 (n = 10), AD (n = 9) patients and healthy control (Ctrl) groups (n = 5) were analyzed. Based on the proteomics profile, the PLS-DA score plot between the three groups showed a clear group separation and sample clustering (R2 = 0.957, Q2 = 0.732). Significantly differentially abundant proteins (p < 0.05, FC cut off 2) were identified between DOCK8-deficient and AD groups relative to Ctrl (n = 105, and n = 109) and between DOCK8-deficient and AD groups (n = 85). Venn diagram analysis revealed a differential regulation of 24 distinct proteins from among the 85 between DOCK8-deficient and AD groups, including claspin, haptoglobin-related protein, immunoglobulins, complement proteins, fibulin, and others. Receiver-operating characteristic curve (ROC) analysis identified claspin and haptoglobin-related protein, as potential biomarkers with the highest sensitivity and specificity (AUC = 1), capable of distinguishing between patients with DOCK8 deficiency and AD. Network pathway analysis between DOCK8-deficiency and AD groups revealed that the identified proteins centered around the dysregulation of ERK1/2 signaling pathway. Herein, proteomic profiling of DOCK8-deficiency and AD groups was carried out to determine alterations in the proteomic profiles and identify a panel of the potential proteomics biomarker with possible diagnostic applications. Distinguishing between DOCK8-deficiency and AD will help in the early initiation of treatment and preventing complications.

14.
J Proteome Res ; 20(1): 549-564, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33089695

RESUMO

Cystic fibrosis is a genetic pathology characterized by abnormal accumulation of mucus in the respiratory, gastrointestinal, and reproductive tracts, caused by mutations in the CFTR gene. Although the classical presentation of the condition is well known, there is still a need for a better characterization of metabolic alterations related to cystic fibrosis and different genotypic mutations. We employed untargeted, comprehensive lipidomics of blood serum samples to investigate alterations in the lipid metabolism related to the pathology, mutation classes, and lung function decline. Six unique biomarker candidates were able to independently differentiate diseased individuals from healthy controls with excellent performance. Cystic fibrosis patients showed dyslipidemia for most lipid subclasses, with significantly elevated odd-chain and polyunsaturated fatty acyl lipids. Phosphatidic acids and diacylglycerols were particularly affected by different genotypic mutation classes. We selected a biomarker panel composed of four lipids, including two ceramides, one sphingomyelin, and one fatty acid, which correctly classified all validation samples from classes III and IV. A biomarker panel of five oxidized lipids was further selected to differentiate patients with reduced lung function, measured as predicted FEV1%. Our results indicate that cystic fibrosis is deeply related to lipid metabolism and provide new clues for the investigation of the disease mechanisms and therapeutic targets.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Lipidômica , Fibrose Cística/diagnóstico , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Humanos , Pulmão/fisiopatologia , Mutação
15.
Int J Mol Sci ; 21(19)2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33050003

RESUMO

Cystic fibrosis (CF), the most common lethal autosomal recessive disorder among Caucasians, is caused by mutations in the CF transmembrane conductance regulator (CFTR) chloride channel gene. Despite significant advances in the management of CF patients, novel disease-related biomarkers and therapies must be identified. We performed serum proteomics profiling in CF patients (n = 28) and healthy subjects (n = 10) using the 2D-DIGE MALDI-TOF proteomic approach. Out of a total of 198 proteins identified, 134 showed a statistically significant difference in abundance and a 1.5-fold change (ANOVA, p < 0.05), including 80 proteins with increased abundance and 54 proteins with decreased abundance in CF patients. A multiple reaction monitoring-mass spectrometry analysis of six differentially expressed proteins identified by a proteomic approach (DIGE-MALD-MS) showed a significant increase in C3 and CP proteins and a decrease in APOA1, Complement C1, Hp, and RBP4proteins compared with healthy controls. Fifteen proteins were identified as potential biomarkers for CF diagnosis. An ingenuity pathway analysis of the differentially regulated proteins indicates that the central nodes dysregulated in CF subjects involve pro-inflammatory cytokines, ERK1/2, and P38 MAPK, which are primarily involved in catalytic activities and metabolic processes. The involved canonical pathways include those related to FXR/RXR, LXR/RXR, acute phase response, IL12, nitric oxide, and reactive oxygen species in macrophages. Our data support the current efforts toward augmenting protease inhibitors in patients with CF. Perturbations in lipid and vitamin metabolism frequently observed in CF patients may be partly due to abnormalities in their transport mechanism.


Assuntos
Fibrose Cística/sangue , Fibrose Cística/genética , Proteoma , Transdução de Sinais/genética , Transcriptoma , Adolescente , Adulto , Biomarcadores/metabolismo , Criança , Estudos de Coortes , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Mutação , Mapas de Interação de Proteínas , Proteômica/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Eletroforese em Gel Diferencial Bidimensional/métodos , Adulto Jovem
16.
Metabolites ; 10(10)2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33050140

RESUMO

This article reports a targeted metabolomic method for total plasma fatty acids (FAs) of clinical or nutritional relevance. Thirty-six saturated, unsaturated, or branched-chain FAs with a chain length of C8-C28 were quantified using reversed-phase liquid chromatography-tandem mass spectrometry. FAs in plasma (10 µL) were acid-hydrolyzed, extracted, and derivatized with DAABD-AE (4-[2-(N,N-Dimethylamino)ethylaminosulfonyl]-7-(2-aminoethylamino)-2,1,3-benzoxadiazole) at 60 °C for 1 h. Derivatization resulted in a staggering nine orders of magnitude higher sensitivity compared to underivatized analytes. FAs were measured by multiple-reaction monitoring using stable isotope internal standards. With physiological and pathological analyte levels in mind, linearity was established using spiked plasma. Intra-day (n = 15) and inter-day (n = 20) imprecisions expressed as variation coefficient were ≤10.2% with recovery ranging between 94.5-106.4%. Limits of detection and limit of quantitation ranged between 4.2-14.0 and 15.1-51.3 pmol per injection, respectively. Age-stratified reference intervals were established in four categories: <1 month, 1-12 month, 1-18 year, and >18 year. This method was assessed using samples from patients with disorders affecting FAs metabolism. For the first time, C28:0 and C28:0/C22:0 ratio were evaluated as novel disease biomarkers. This method can potentially be utilized in diagnosing patients with inborn errors of metabolism, chronic disease risk estimation, or nutritional applications.

17.
Genet Med ; 22(12): 1967-1975, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32719396

RESUMO

PURPOSE: Male infertility remains poorly understood at the molecular level. We aimed in this study to investigate the yield of a "genomics first" approach to male infertility. METHODS: Patients with severe oligospermia and nonobstructive azoospermia were investigated using exome sequencing (ES) in parallel with the standard practice of chromosomal analysis. RESULTS: In 285 patients, 10.5% (n = 30) had evidence of chromosomal aberrations while nearly a quarter (n = 69; 24.2%) had a potential monogenic form of male infertility. The latter ranged from variants in genes previously reported to cause male infertility with or without other phenotypes in humans (24 patients; 8.4%) to those in novel candidate genes reported in this study (37 patients; 12.9%). The 33 candidate genes have biological links to male germ cell development including compatible mouse knockouts, and a few (TERB1 [CCDC79], PIWIL2, MAGEE2, and ZSWIM7) were found to be independently mutated in unrelated patients in our cohort. We also found that male infertility can be the sole or major phenotypic expression of a number of genes that are known to cause multisystemic manifestations in humans (n = 9 patients; 3.1%). CONCLUSION: The standard approach to male infertility overlooks the significant contribution of monogenic causes to this important clinical entity.


Assuntos
Infertilidade Masculina , Oligospermia , Animais , Proteínas Argonautas , Proteínas de Transporte , Proteínas de Ciclo Celular , Deleção Cromossômica , Cromossomos Humanos Y , Genômica , Humanos , Infertilidade Masculina/genética , Masculino , Camundongos , Oligospermia/genética , Aberrações dos Cromossomos Sexuais
18.
Acta Haematol ; 143(6): 583-593, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32541138

RESUMO

Acute myeloid leukemia (AML) in the setting of Noonan syndrome (NS) has been reported before without clear guidelines for treatment or prognosis in these subgroups of patients, most likely due to its rarity and incomplete understanding of the pathogenesis of both diseases. In the current era of next-generation sequencing-based genomic analysis, we can better identify patients with NS with more accurate AML-related prognostic markers. Germline mutations in PTPN11 are the most common cause of NS. Somatic mutations in NPM1 occur frequently in AML. Here, we describe a young adult patient with a novel combined germline PTPN11 and somatic NPM1, IDH1,and BCL6 mutations who presented with fatal AML. In addition, a 50.5-Mb interstitial deletion of 7q21.11-q33 in tumor DNA was detected by chromosomal microarray analysis. While mutations in the transcriptional repressor BCL6 are known to contribute to the pathogenesis of diffuse large B cell lymphoma (DLBCL) and chronic lymphocytic leukemia (CLL), its novel identification in this patient suggests an expanded role in aggressive AML. The identification of key molecular aberrations including the overexpression of SHP2, which drives leukemogenesis and tumorigenesis, has led to the development of novel investigational targeted SHP2 inhibitors.


Assuntos
Mutação em Linhagem Germinativa , Isocitrato Desidrogenase/genética , Leucemia Mieloide Aguda/genética , Síndrome de Noonan/genética , Proteínas Nucleares/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteínas Proto-Oncogênicas c-bcl-6/genética , Adulto , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Masculino , Síndrome de Noonan/metabolismo , Síndrome de Noonan/patologia , Nucleofosmina
19.
Talanta ; 216: 120951, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32456943

RESUMO

Sepiapterin reductase deficiency (SR) is a rare inborn disorder of neurotransmitter metabolism. The early diagnosis of SR disease should be achieved through the determination of the sepiapterin level in body fluids of suspected patients. Here, we report the selection, identification, and characterization of DNA aptamers against sepiapterin. The aptamer selection was achieved via the systematic evolution of ligand by the exponential enrichment technique. After ten rounds of selection, high-affinity aptamers were identified. The binding affinities of the selected aptamers were evaluated using fluorescence binding assays showing dissociation constants ranging from 37.3 to 79.0 nM. The highest affinity aptamer was then integrated into a competitive electrochemical biosensor. The biosensor achieved outstanding sensitivity with a detection limit of 0.8 pg/ml which was much lower than the reported chromatographic method for sepiapterin quantification. The aptasensor has also shown a high degree of selectivity against the closely-related compound. The aptasensor was then challenged by detecting the sepiapterin in spiked serum samples where a good recovery percentage was achieved.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais , Técnicas Eletroquímicas , Pterinas/análise , Técnica de Seleção de Aptâmeros , Humanos
20.
J Proteome Res ; 19(6): 2346-2357, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32312052

RESUMO

Mucoviscidosis of the respiratory, gastrointestinal, and genitourinary tracts is the major pathology in patients with cystic fibrosis (CF), a lethal monogenic panethnic and multisystemic disease most commonly identified in Caucasians. Currently, the measurement of immuno reactive trypsinogen in dry blood spots (DBSs) is the gold-standard method for initial newborn screening for CF, followed by targeted CF transmembrane regulator (CFTR) mutation analysis, and ultimate confirmation with abnormally elevated sweat chloride. Previous metabolomics studies in patients with CF reported on different biomarkers such as breath 2-aminoacetophenone produced during acute and chronic infection in human tissues, including the lungs of CF patients. Herein, we used liquid and gas chromatography-mass spectrometry-based targeted metabolomics profiling to identify potentially reliable, sensitive, and specific biomarkers in DBSs collected from 69 young and adult people including CF patients (n = 39) and healthy control (n = 30). A distinctive metabolic profile including 26 significantly differentially expressed metabolites involving amino acids, glycolysis, mitochondrial and peroxisomal metabolism, and sorbitol pathways was identified. Specifically, the osmolyte (sorbitol) was remarkably downregulated in CF patients compared to healthy controls indicating perturbation in the sorbitol pathway, which may be responsible for the mucoviscidosis seen in patients with CF. The significance of our findings is supported by the clinical utility of inhaled mannitol and hypertonic saline in patients with CF. The systemic administration of sorbitol in such patients may confer additional benefits beyond the respiratory system, especially in those with misfolded CFTR proteins.


Assuntos
Fibrose Cística , Adulto , Fibrose Cística/diagnóstico , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Humanos , Recém-Nascido , Metaboloma , Metabolômica , Mutação , Triagem Neonatal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA